EFFECTS OF THERMOMECHANICAL TREATMENT ON SELECTED PROPERTIES OF Acacia HYBRID WOOD
DOI:
https://doi.org/10.31413/nat.v12i4.18322Palabras clave:
Thermo-mechanical compressed wood; Acacia hybrid wood; compression ratio, density; water repellency effectivenessResumen
ABSTRACT: Wood densification is a process combining heat, moisture, and mechanical action to improve the density of wood without changing the characteristics of wood, including density, water repellency effectiveness (WRE), modulus of rupture (MOR) and compressive strength (CS). This study aims to identify and evaluate the effect of the compression parameter on some physical and mechanical properties of Acacia hybrid wood. Design Expert 11.0.8 software was used to design experiments, and the experimental data was processed using SPSS Statistics 22.0. The obtained results indicate that the higher the compression ratio is, the higher the increased density of the compressed wood will be achieved. As the temperature and compression time increase, the density increases. However, the density of compressed wood will decrease slightly when the temperature and the time exceed 180°C and 180 minutes, respectively. After treatment, Acacia hybrid wood has good WRE values of 15.12 % to 31.21%. MOR and CS increased with the growing ratio, temperature and time of compression but tended to fall when the temperature and time surpassed 160°C and 120 minutes.
Keywords: thermomechanical compressed wood; Acacia hybrid wood; compression ratio; density; water repellency effectiveness.
Efeitos do tratamento termomecânico em propriedades da madeira de um híbrido de Acacia
RESUMO: A densificação da madeira é um processo que combina calor, umidade e ação mecânica para melhorar a densidade da madeira sem alterar suas características, incluindo densidade, eficácia de repelência à água (WRE), módulo de ruptura (MOR) e resistência à compressão (CS). Este estudo tem como objetivo identificar e avaliar o efeito do parâmetro de compressão em algumas propriedades físicas e mecânicas da madeira híbrida de acácia. O software Design Expert 11.0.8 foi usado para projetar experimentos, e os dados experimentais foram processados usando o SPSS Statistics 22.0. Os resultados obtidos indicam que quanto maior a taxa de compressão, maior será o aumento da densidade da madeira comprimida. À medida que a temperatura e o tempo de compressão aumentam, a densidade aumenta. No entanto, a densidade da madeira comprimida diminuirá ligeiramente quando a temperatura e o tempo excederem 180 °C e 180 minutos, respectivamente. A madeira híbrida de acácia, após o tratamento, apresenta boa WRE com valores de 15,12% a 31,21%. MOR e CS aumentaram com a taxa de crescimento, temperatura e tempo de compressão, mas tenderam a cair quando a temperatura e o tempo ultrapassaram 160°C e 120 minutos.
Palavras-chave: madeira comprimida termomecânica; madeira híbrida de acácia; taxa de compressão; densidade; eficácia de repelência à água.
Referencias
ARRUDA, L. M.; DEL MENEZZI, C. H. Effect of thermomechanical treatment on physical properties of wood veneers. International Wood Products Journal, v. 4, n. 4, p. 217-224, 2013. https://doi.org/10.1179/2042645312Y.0000000022
BÁDER, M.; NÉMETH, R. A Review of Wood Compression along the Grain - After the 100th Anniversary of Pleating. Forests, v. 14, e763, 2023. https://doi.org/10.3390/f14040763
BOONSTRA, M. J.; BLOMBERG, J. Semi-isostatic densification of heat-treated radiata pine. Wood Science Technology, v. 41, n. 7, p. 607-617, 2007. https://doi.org/10.1007/s00226-007-0140-y
CANDAN, Z.; KORKUT, S.; UNSAL, O. Effect of thermal modification by hot pressing on performance properties of paulownia wood boards. Industrial Crops Products, v. 45, p. 461-464, 2013. https://doi.org/10.1016/j.indcrop.2012.12.024
COWN, D. J. Wood: Density. In: BUSCHOW, K. H. J.; CAHN, R. W.; FLEMINGS, M. C.; ILSCHNER, B.; KRAMER, E. J.; MAHAJAN, S.; VEYSSIÈRE, P. Encyclopedia of Materials: Science and Technology. 2nd Edition. Elsevier: 2001. p. 9620-9622. https://doi.org/10.1016/B0-08-043152-6/01741-1
DARWIS, A.; WAHYUDI, I.; DWIANTO, W.; CAHYONO, T. D. Densified wood anatomical structure and the effect of heat treatment on the recovery of set. Journal of the Indian Academy of Wood Science, v. 14, n. 1, p. 24-31, 2017. https://doi.org/10.1007/s13196-017-0184-z
JIANG, J.; LU, J.; HUANG, R.; LI, X. Effects of time and temperature on the viscoelastic properties of Chinese fir wood. Drying Technology, v. 27, n. 11, p. 1229-1234, 2009. https://doi.org/10.1080/07373930903266726
KUTNAR, A.; KAMKE, F. A. Influence of temperature and steam environment on set recovery of compressive deformation of wood. Wood Science Technology, v. 46, n. 5, p. 953-964, 2012. https://doi.org/10.1007/s00226-011-0456-5
KUTNAR, A.; ŠERNEK, M. Densification of wood. Zbornik Gozdarstva in Lesarstva, v. 82, p. 53-62, 2007.
NAVI, P.; HEGER, F. Combined densification and thermo-hydro-mechanical processing of wood. MRS Bulletin, v. 29, n. 5, p. 332-336, 2004. https://doi.org/10.1557/mrs2004.100
NAVI, P.; SANDBERG, D. Thermo-hydro-mechanical wood processing. New York: EPFL Press, 2012. 280p.
NGOAN, T.; BAO, T. Growth of Acacia hybrid (Acacia auriculiformis x Acacia mangium) plantations on different soil levels in Dong Nai province. Forestry Science and Technology, v. 6, p. 25-35, 2019.
RAUTKARI, L.; LAINE, K.; LAFLIN, N.; HUGHES, M. Surface modification of Scots pine: the effect of process parameters on the through thickness density profile. Journal of Materials Science, v. 46, n. 14, p. 4780-4786, 2011. https://doi.org/10.1007/s10853-011-5388-9
VADIVEL, K. S.; GOVINDASAMY, P. Mechanical and water absorption properties of Acacia Arabica bark fiber/polyester composites: Effect of alkali treatment and fiber volume fraction. Materials Today: Proceedings, v. 46, n. 6, p. 2281-2287, 2021. https://doi.org/10.1016/j.matpr.2021.04.05
SALMEN, L. Temperature and water induced softening behaviour of wood fiber based materials. Stockholm: Department of Paper Technology, Royal Institute of Technology, 1982. 150p.
SANDBERG, D.; NAVI, P. Introduction to Thermo-Hydro-Mechanical (THM) Wood Processing. Växjö, Sweden: Växjö University, 2007. 177p.
STAMM, A.J. Wood and cellulose science. New York: Ronal Press Company, 1964. 549p.
TELEWSKI, F. W. Flexure wood: mechanical stress induced secondary xylem formation. In: KIM, Y. S.; FUNADA, R.; SINGH, A. P. Secondary xylem biology. Academic Press, 2016. p. 73-91. https://doi.org/10.1016/b978-0-12-802185-9.00005-x
WITEK-KROWIAK, A.; CHOJNACKA, K.; PODSTAWCZYK, D.; DAWIEC, A.; POKOMEDA, K. Application of response surface methodology and artificial neural network methods in modelling and optimization of biosorption process. Bioresource Technology, v. 160, p. 150-160, 2014. https://doi.org/10.1016/j.biortech.2014.01.021
ZHOU, Q.; CHEN, C.; TU, D.; ZHU, Z.; LI, K. Surface Densification of Poplar Solid Wood: Effects of the Process Parameters on the Density Profile and Hardness. BioResources, v. 14, n. 2, p. 4814-4831, 2019. https://doi.org/10.15376/biores.14.2.4814-4831
Descargas
Publicado
Número
Sección
Cómo citar
Licencia
Derechos de autor 2024 Nativa

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
Los derechos de autor de los artículos publicados en esta revista pertenecen al autor, con los derechos de primera publicación de la revista. En virtud de aparecer en esta revista de acceso público, los artículos son de libre uso, con sus propias atribuciones, en aplicaciones educativas y no comerciales.
Los artículos publicados en esta revista pueden ser reproducidos parcialmente o utilizados como referencia por otros autores, siempre que se mencione la fuente, es decir, Revista Nativa.

